Бывает раз в 10 000 лет. Астрономы ошеломлены самым ярким всплеском гамма-лучей в истории наблюдений
Странная вспышка произошла в галактике за 2 миллиарда световых лет от нас.
Гамма-всплеск, примерно в 70 раз ярче любого из ранее зафиксированных, был зарегистрирован еще 9 октября прошлого года. Сейчас исследователи говорят, что подобное событие случается один раз в 10000 лет. Странная вспышка произошла в галактике за 2 миллиарда световых лет от нас. Новое исследование, которое подробно описывает аспекты взрыва, в конце марта было опубликовано в The Astrophysical Journal Letters.
Хотя зафиксированный всплеск (официальное название которого GRB 221009A), вероятно, не самый яркий из тех, что когда-либо случались в истории Вселенной, это все же «вероятно, самый яркий всплеск рентгеновских и гамма-лучей с момента возникновения человеческой цивилизации»: большинство гамма-инструментов в космосе не смогли измерить его истинную интенсивность, так как были буквально ослеплены светом.
Это принесло явлению прозвище «BOAT», или «самая яркая за все время» (Brightest of All Time).
Всплески гамма-излучения, как предполагается, происходят, когда массивные звезды сталкиваются или погибают и уступают место черным дырам. Это, вероятно, самые огромные взрывы во Вселенной — сильнее сверкающих сверхновых, которые также отмечают смерть звезд.
Существуют долго-и кратковременные гамма-всплески. Gizmodo рассказывает, что короткие события чаще ассоциируются со слиянием звезд и образованием черных дыр, в то время как более продолжительные (дольше двух секунд) всплески связаны со смертью звезд.
Смерть звезд иногда приводит к возникновению массивных сверхэнергетических струй (джетов) материала. Если эти струи направлены прямо на Землю — как это произошло при «недавнем» взрыве — это делает гамма-лучи особенно яркими из нашей точки наблюдения.
Всплески гамма-излучения быстротечны и могут возникать в любой точке неба. Поэтому астрономам намного проще наблюдать за их «послесвечением», чем за первоначальной сверкающей вспышкой. В течение нескольких недель после первой вспышки рентгеновский свет рассеивался пылью Млечного Пути. Это привело к появлению нескольких пылевых колец, ближайшее из которых находится примерно в 1300 световых годах от нас, а самое отдаленное — примерно в 61000 световых лет, на другой стороне Млечного Пути.
Ученые надеются, что гамма-лучи вскоре можно будет использовать для обнаружения гравитационных волн — ряби в пространстве-времени, вызванной колоссальными событиями вроде слияния черных дыр. Гравитационные волны едва уловимо изменяют количество времени, которое требуется свету, чтобы достичь нас из отдаленных источников. Эти едва уловимые изменения в пространстве-времени сегодня обнаруживаются с помощью детекторов гравитационных волн LIGO и Virgo.
Теорию о том, что гравитация должна распространяться со скоростью света, как волны, проходящие через само пространство-время, впервые выдвинул Альберт Эйнштейн. После десятилетий целенаправленных поисков ученые наконец объявили в 2016 году, что они заметили предсказанную Эйнштейном рябь, появившуюся после столкновения пары черных дыр.
Еще более важной целью является определение фона гравитационной волны — вы можете представить это как целый океан гравитационных волн, которые динамически пересекаются, возникая в результате столкновений черных дыр и нейтронных звезд по всему космосу. Исследователи надеются, что именно источники гамма-излучения могут быть использованы для обнаружения гравитационных волн вокруг нас.
Комментарии